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LOW ALTITUDE PLASMA LINE ANISOTROPY

INTRODUCTION

Plasma line observations obtained from incoherent radar backscatter have been used as a
ground-based method for deriving information about the size and anisotropy of the ionospheric
photoelectron fluxes. In the past, interpretation of plasma line data has been confined to alti-
tudes above the F2 peak where plasma lines enhanced by photoelectrons moving upward have
larger amplitudes than those enhanced by downward moving photoelectrons. The net upward
electron flux in the topside ionosphere arises because the photoelectron mean free path is large
and within a mean free path, more electrons are produced just below a given point of observa-

tion than just above it.

At lower altitudes the photoelectron mean free path is small compared to the gradient
scale length of the photoelectron production rate, yet plasma line anisotropy is still observed.
Measurements below the peak were first shown by Yngvesson and Perkins (1968) and recently
by Legeune and Kofman (1977). These. observations have consistently shown anisotropy in
the plasma line amplitude ranging from 20% to a factor of two for upgoing to downgoing parti-

cles. Measurements made at Arecibo have shown a 20-50% anisotropy.

In this paper we describe calculations of the plasma line intensity which use a detailed
transport equation solution for the photoelectron distribution function. We postulate from the
work described below that the observed low altitude anisotropy reflects the forward peaked

property of the elastic electron neutral scattering cross sections. We further argue that given

Manuscript submitted August 8, 1977.
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anisotropic cross sections, an anisotropy in the low altitude electron fluxes arises when the lo-

cal mean free path is of the order of the local scale height.

LOW ALTITUDE FLUX ANISOTROPY

The photoelectron transport calculation used in our plasma line studies has been
described in Oran and Strickland (1976). Further technical description of the general method
can be found in Strickland er al. (1976). Figures 1 and 2 show results of a typical calculation of
the photoelectron flux as a function of pitch angle at 157 and 355 km for selected energies.
Figure 3 shows the way in which the calculated flux anisotropy of 4 ev electrons varies with al-

titude.

The low altitude, the low energy flux anisotropy shown in Figures 1 and 3 arises as a
consequence of the fact that the mean free path of an energetic photoelectron (E > 10 ev) can
be of the same order of magnitude as the local neutral density scale height. This fact, coupled
with an anisotropy in the elastic electron-neutral collision cross sections, results in a net down-
ward flow of particles. The cross sections for atomic oxygen, which are shown in Figure 4
(Blaha and Davis, 1975), show a typical angular dependence: they are forward peaked and

reach a minimum at some angle greater than ninety degrees.

Some insight into the nature of this low altitude flux anisotropy can be obtained by look-
ing at a simplified photoelectron calculation based on the limiting case in which electron-
neutral collisions are assumed to be entirely forward scattered. We take the photoelectron
equation of motion to be

Vo= —y,, )V

1)

where v, is the electron-neutral collision frequency and z is the spatial coordinate in the verti-
cal direction. Then we consider a neutral gas in one dimension with a density gradient such

that
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where L is the neutral density scale height. We then wish to solve an equation of the form
9F, oF,
Vor TPV TR UEV,), ®)

which represents a steady state one dimensional Boltzmann equation for the distribution func-
tion, F,, with a source of electrons at velocity +v,. We assume that the electrons move
through a medium in which their mean free path is very small compared to the gradient scale
length of their production rate. This assumption is valid in the atmosphere up to about 200

km and allows us for the purposes of this discussion to set 8 equal to a constant

The solution to Eq. (3) is

Ff(vz) = B
Z
"ol"o +|xv, —vV —fue,, dz/L
o

] @)

where v, is the collision frequency at z =0. The superscripts on Jp» + and —, denote upgoing

and downgoing particles, respectively. With no loss of generality we can define the altitude of

interest to be z =0, and Eq. (4) becomes

+ a B
bt TR T s

which is valid when (v,L —v,) >0. This condition guarantees that electrons created at
z = oo cannot reach z = 0. Violation of this constraint leads to a singularity in f, »since B
does not vanish at o in this simple model. We define an anisotropy parameter

S (vl wo + (vo — VL

deeiin .
M =T 0D v =6, D ®

Note that there is no anisotropy when |v| = v, since A4(v,) = 1. The anisotropy builds up

as the electron energy degrades.
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In order to concentrate specifically on the low energy particles, we define the local mean

free path as L™? = v /v, so that when L"™?/L < 1,

mfp
A(lv] <<v,) = 1+ L7HL
1 =~ LM/ N
which shows that a significant anisotropy exists at low energies when the local photoelectron
mean free path is comparable to the scale height. For example, from Figure 5 we see that this

condition is satisfied for 10 ev electrons at 150 km.

We emphasize that Equation 7 is the result of a qualitative calculation given to help
understand the detailed simulation results shown in Figures 1, 2, and 3. Aside from the un-
realistic source term, Equation 3 includes only forward scattering with no diffusion effects.

Thus it overemphasizes the anisotropy. The detailed simulation is a solution of the steady state

Boltzmann equation

Qe oF
iy +v -V, F=0Gzv) + YRS &

where Qs a local source term, V-V  F represents the loss of energy by the photoeiectrons to
the ambient electrons through collisions and plasma wave excitations, and 9 F / 91| . involves
the details of elastic and inelastic collisions among electrons and neutral species. Solution of
Equation (8) involves following the detailed degradation of the primary electron spectrum pro-
duced by ionization due to solar radiation and yields the distribution function, F(z,v,u) where

u is the pitch angle (Oran and Strickland, 1976).
PLASMA LINES FROM INCOHERENT RADAR SCATTER

When the radar wavelength, A, is very much larger than the Debye length, the radar sig-
nal is scattered incoherently by electron density fluctuations. Because the ionosphere is a
non-equilibrium plasma, the intensity of the electron density fluctuations is enhanced beyond

that expected from purely thermal fluctuations. The fast photoelectrons feed energy into and




excite the plasma waves which in term are Landau damped. The total amplitude of the plasma
line signal represents an equilibrium between a number of processes which excite and damp
the plasma waves scattering the radar beam. Collisions between thermal electrons and ions
can excite plasma waves and the interaction with energetic photoelectrons can enhance the sig-
nal smplitude above the thermal equilibrium value. The waves are damped by electron colli-

sions with ions and neutrals as well as by Landau damping.

The plasma line signal amplitude can be expressed in terms of a temperature, 7,, which
reduces to 7, when the plasma is in thermal equilibrium. The upshifted (downshifted) signal
is a result of scattering off of plasma waves excited by electrons moving primarily down (up)
the magnetic field line. Thus the returned signals, proportional to Tp+ and 7, , may differ by
an amount related to the degree of anisotropy in the photoelectron flux spectrum. The balance
of processes exciting and damping the plasma waves leads to an expression for T,

T, (vy) o e
Te x€ L+ L, o)

(Perkins and Salpeter, 1965a and b). In this equation f,,, and Jf, are the Maxwellian and pho-
toelectron contributions to the plasma line source term and x ¢ represents the effects of elec-

tron collisions with ions and neutrals. The scattering occurs off of plasma oscillations of
wavelength A/2 and phase velocity Vg4 =vgpA/2 and E, -%mevg. The returned plasma

line signal is Doppler shifted about the radar frequency by an amount +v R»> Where

12T,

u% =2 4

7 R e R
» +va,sm0_u‘,

A2m, (10)
where v, is the plasma frequency, m, is the electron mass, v, is the electron cyclotron fre-

quency, and @ is the angle between the direction of radar beam propagation and the magnetic

field.
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In the presence of the earth’s magnetic field,

1/2
[ e ] b il ~bsin?0 1, (bsin 29) ¢~ —m)%/2c0s%

N e
cosé

f, -
™ UTe] 422w an

(Selpeter, 1961), where N, is the ambient electron density, 1, is the Bessel function of ima-

ginary argument,

y = VR/VL‘E'
(12)
kT,
b
Me A°vge (13)
Srlvg) = ci:‘) T j‘: v, J? (W)F(v, u,)dv,,
n = —co min (14)
(Fremouw et al., 1969), where J, is the Bessel function of real argument,
2v, sin @
AP 15)
A (VR b= nu“,)
L 2 cos f 16)

The v, and u are the components of electron velocity perpendicular and parallel to the magnet-
ic field, and F(v, ,u) is the three-dimensional velocity distribution function for electrons where
u is evaluated at u,. The lower unit of the integral, Vmin » COrresponds to that velocity at which
the photoelectron distribution function begins to deviate substantially from Maxwellian. The
photoelectron contribution to the damping, Lp, can be expressed as

27wkT, & % -
-—t v vLJ,f(W)ﬂMi +-—"—LIF(VL.u)} dv,.

P ycoso mu du  myv, v, g, an

n= —co

Substitution of a Maxwellian distribution function into S, and L, both yield f,,,. The x¢ in

Equation (9) is related to the electron-ion and electron-neutral collision frequencies by

. N, m,
x O 3 3 Vel'b
vya kT, (18)

RS2 o A A0 A i Tt




a =\/4x D
(19)

where D is the Debye length.

The plasma line is in thermal equilibirum, 7, = 7,, when either thermal electron Lan-
dau damping dominates or collisional damping dominates. Thus there is only a limited range of

phase energies for which photoelectrons are the dominant contribution to the plasma line.

Figure 6 summarizes a set of plasma line data taken at Arecibo Observatory in February
27, 1977. The Arecibo Observatory is part of the National Astronomy and lonosphere Center,
which is operated by Cornell University under contract with the National Science Foundation.
The plasma line measurements were interleaved with measurement of electron and ion tem-
peratures and electron densities. We note that the anisotropy in plasma line temperatures
shown in this data is typical of the 20-50% enhancement of T,,+ over T,” found at Arecibo.
Uncertainties in the data points are small and arise only through calibration uncertainties. During the
nighttime, the asymmetry in the upshifted and downshifted plasma lines disappears. Superimposed on

the figure are the measured values of vp.

RESULTS

The approach we have taken is to calculate the magnitude and pitch angle anisotropy of
the photoelectron distribution function from the detailed transport equation and then derive
the plasma line temperature we would observe. In this way we do not expect the calculation to
be restricted to high altitudes or a particular range of phase energies. Figure (7) shows calcula-
tions of Tp"’ and Tp‘ made with the photoelectron distribution function, F(z,v,u), and Equa-
tions (9) through (20). The values of v superimposed in the profiles were determined by elec-

tron temperatures and densities measured at Arecibo Observatory.




Figure (8) graphically summarizes the important terms contributing to Equation (7).

Below about 200 km, J, is greater than f,,*. indicating a small anisotropy in electron flux:

more electrons are going down than up. However in this region T » is determined primarily by
a balance between the source term, i P and the loss term, L,. From Figure (8) we see that up
to about 200 km,

/2

5
indicating that the relative difference between L," and L,” is greater than that between g
and f,”. In Figure (9) we have rewritten the terms in the denominator of Equation (9) in

terms of damping rates.

At high altitudes, f,,+ is considerably larger than Jp, and these remain the important
source terms until about 400 km. The increasing importance of the damping due to thermal
electrons tends to reduce the importance of the difference between Lp"’ and L,,_. Up to that al-
titude where thermal electrons are dominant and when E, is very low, T,,+ is greater than

B

An important point we wish to make is that previous calculations of the source and loss
terms due to photoelectrons treat photoelectrons with velocities less than v, as Maxwellian.
We note that especially at low altitudes the calculated photoelectron distribution function devi-
ates strongly from Maxwellian at energies of a few ev. At altitudes below 200 km, our calcula-

tions indicate that 50-75% of L, and 25-50% of f, is evaluated in the integral range v,;. to V-
CONCLUSION

The investigations we have made of the photoelectron flux in the ionosphere have un-
covered an anisotropy in the low altitude, low energy electron flux spectra. This arises through

the conversion of a spatial inhomogeneity in the neutral atmosphere into a velocity distribution

72 O DO 4 AT e PO T,

P A N T Sy R




N e i - o AR

anisotropy. The key to this is the forward peaked property of the elastic electron-neutral cross
sections. We conclude that the downgoing electron flux is slightly larger than the upgoing flux

in the aititude range from about 130 to 200 km.

In the altitude range described above, the plasma line amplitude is a balance between a
source term f,,, which excites plasma waves to characteristic temperatures appropriate for pho-
toelectrons, and a Landau damping term L,,. Our calculations show that the low energy pho-
toelectrons (E< E; ) play a significant role in the damping. Treating them as Maxwellian

severely underestimates their density and neglects their anisotropy.
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Fig. 3 — Calculated photoelectron flux at 4 ev as a func-
tion of pitch angle at selected altitudes.
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Fig. 5 — Ratio of the mean free path of electrons
with energies between 3 and 25 ev to the neutral
density scal height as a function of altitude.
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